Технические газы в баллонах: кислород, пропан, аргон, ацетилен, гелий, углекислота, сварочная смесь в Нижнем Новгороде, Дзержинске, Арзамасе, Кстово, Балахне, Городце, Бору, Павлово.

О Компании

ООО "ОксиГазСервис" с 2004 года является одним из ведущих производителей технических газов, чистых газов, газовых смесей в Нижнем Новгороде и занимает прочные позиции на Нижегородском рынке. У нас вы можете купить кислород в баллонах, пропан в баллонах, углекислоту в баллонах, ацетилен в баллонах, сварочную смесь, аргон в баллонах или заправить баллоны указанными техническими газами. Предоставляем услуги по аренде, ремонту и переосвидетельствованию баллонов.

Акция
1 кг жидкого АЗОТА в ваш сосуд Дьюара за 38 руб.

Программа «Окси трейд»! Старый баллон? Сделай апгрейд!

Уважаемые коллеги!
Мы поставим вам *новые баллоны под технический газ, за вычетом стоимости вашей старой тары,
в результате - новые баллоны по низкой цене.

тел: +7 831 216 2000

            Какие бывают и как влияют на процесс полуавтоматической сварки низколегированных и углеродистых сталей.

         Исследования сварки в среде различных смесей на основе аргона (далее Ar) берут свое начало с 70-х годов прошлого столетия, однако наибольшее практическое распространение сварочные смеси получили в 90-х годах, особенно в европейских государствах, таких как Германия, Великобритания, Франция, Швеция.  На сегодняшний день применение смесей Ar в вышеперечисленных государствах занимает не менее 95% рынка.

            Многие отечественные предприятия, напротив, до сих пор применяют СО2 для низколегированных и углеродистых сталей, несмотря на неоспоримые преимущества использования смесей на основе Ar.

            Атмосфера, защищающая ванну, играет важнейшую роль в MAG-процессе. Ее воздействие сказывается на свойствах сварного шва, скорости сварки, загрязнении атмосферы рабочего поста.

Переход на смеси на основе Ar вместо СО2 позволяет оптимизировать сварку, в том числе  сделать ее более экономичной. Смеси Ar пришли на смену углекислому газу  и теперь используются в Европе при работе с  черными сталями ( или со сталями с небольшим количеством легирующих добавок). При сварке черных сталей в чистом Ar в шве образуются поры, поэтому используют смеси с добавочными газами — кислородом и/или углекислотой, нормализующие электродугу и улучшающие весь процесс в целом. Добавление к Ar кислорода практически не меняет поведение дуги и ее влияние на ванну и каплю. Также в качестве добавки может выступать гелий, особенно, когда требуется повышенная скорость сварки. Количество добавочного газа зависит от толщин, требуемой скорости, метода: ручной, автоматизированный либо роботизированный.

Выбор газа, прежде всего, оказывает воздействие на следующие ключевые параметры MAG-сварки:

  • поджиг дуги и ее управляемость.
  • производительность и, как следствие, затраты на производство.
  • вид металлопереноса и размер капли.
  • защита от газов, содержащихся в воздухе.
  • возникновение окалины и количество брызг.
  • механические характеристики шва.
  • геометрия шва и глубина проплава.
  • количество и состав выделяющихся аэрозолей.

Преимущества смеси на основе Ar

           Помимо нарушений режимов сварки, состав защитной среды является наиболее важным фактором, влияющим на возникновение брызг. Использование чистого СО2 приводит к повышенному «брызгообразованию» , как результат к нестабильности электродуги. Чем больше СО2 в смеси с Ar, тем большее брызг образуется в процессе полуавтоматической сварки. Чем больше их размер, тем интенсивнее выделение теплоты. Опыты показали, что капли-брызги металла с диаметром более 0,8 мм содержат такое количество теплоты, что привариваются к рабочей плоскости. В большинстве случаев это влечет за собой последующую зачистку или подрезку резцом.

            Шлак, покрывающий шов, состоит из оксидов и выглядит как коричневые стеклообразные «островки». Чем больше окислительных элементов содержится в  смеси (СО2 или О2), тем больше оксидов будет образовываться. Они должны быть удалены перед покраской или другой операцией.

Мех.свойства сварного соединения также очень подвержены влиянию состава защитного газа. Чем ниже содержание СО2, тем «чище» металл шва, тем меньше оксидных включений он содержит. Также микроструктура становится более мелкозернистой, что благоприятно сказывается на ударной вязкости металла шва (рис. 2).

            Усталостная прочность шва также в некоторой степени зависит от защитного газа. Сварка в смесях на основе Ar позволяет получить более плавный переход между швом и основным металлом, чем при использовании чистого СО2 (рис. 3). К сварным соединениям, подвергающимся динамическим нагрузкам, предъявляются повышенные требования к усталостной прочности. Если переход недостаточно плавный, впоследствии потребуется дорогостоящая механическая обработка.

Скорость сварки

            При ее увеличении  в чистом СО2 профиль сварного шва становится более выпуклым, а также ухудшается перенос металла, что ограничивает скорость по сравнению со сваркой в смесях на основе Ar (рис. 3, 4). В данном примере были использованы три различных газа в процессе MAG-сварки стали с небольшим количеством легирующих добавок. Скорость подачи проволоки сохранялась неизменной, напряжение было установлено на наиболее подходящем уровне для каждого защитного газа. Скорость сварки увеличивалась до тех пор, пока шов не становился слишком выпуклым. В результате при снижении процента содержания СО2 в защитной смеси скорость могла быть увеличена (рис. 4).

            Как уже упоминалось, различные защитные газы позволяют получить разнообразную геометрию сварного шва. При работе в смесях на основе Ar металл в сварочной ванне более жидкий, что делает профиль шва более сопряженным с основным металлом, невыпуклым. Сварка же в чистом СО2 делает его сильно выпуклым, переходы  — неплавные. Кроме того, это приводит к низкой усталостной прочности, что также влечет за собой  перерасход присадочной проволоки при сварке в СО2 для получения необходимого катета шва (рис.5).

Задание режимов

            При использовании аргоновых смесей гораздо легче настроить наиболее подходящие сварочные режимы, чем при работе с чистым СО2. Диапазон токов, в которых дуга остается стабильной, гораздо шире в смесях Ar. Чтобы избежать дефектов в шве очень важно выполнить правильную настройку аппарата.

Риск прожога

            Напряжение  в составах на основе Ar на несколько вольт ниже, чем при сварке в СО2 при той же скорости движения сварочной проволоки. Это означает, что в сварочную ванну передается меньше тепловой энергии и риск прожога тонких пластин значительно снижается. Итак, выгоды, получаемые при переходе с чистого СО2 на смеси Ar и СО2, следующие:

  • снижение потерь металла вследствие разбрызгивания;
  • небольшое количество шлака, всплывающего на поверхность шва;
  • улучшение мех. свойств шва (пластичные свойства, вязкость, усталостная прочность);
  • меньшее выгорание легирующих добавок, что означает более высокое значение предела текучести и прочности при растяжении;
  • плоский сварной шов с отсутствием резких «скачков» при переходе к основному металлу;
  • более высокие скорость и эффективность.
  • более простая установка оптимальных сварочных режимов , расширенный диапазон, в котором дуга стабильна — малый риск получения дефектов в шве;
  • меньший риск проплавления, особенно, если речь идет о тонких листах за счет пониженного количества передаваемого тепла.

Виды некоторых смесей, которые можно найти сейчас на рынке сварочных материалов перечислены ниже:

  • 92% Ar, 8% СО2. Используется в роли защитной атмосферы для различных  сталей в режиме струйного переноса металла. Количество брызг, вылетающих из-под проволоки,  минимизируется, что делает данную смесь идеальной для применения в цехе, где требуется экономия времени на зачистку (экономия средств). Практически отсутствует окисление шва, что отлично для процессов с последующей окраской. Используется в различных отраслях производства, от выпуска грузовых автомобилей до судостроения. Очень хорошо подходит для тех.процессов, включающих порошковую покраску.
  • 93% Ar, 5% СО2, 2% O2. Эта трехсоставная смесь приготовлена в основном для тонких сталей. Низкие уровни СО2 и О2 сильно снижают риск прожога и, как следствие, возникновения дефектов в виде пор и свищей. Обеспечивает устойчивость горения электрической дуги, что, в свою очередь, снижает уровень брызг, позволяет экономить проволочный материал и снижает затраты на мех.обработку.
    Большая скорость выполнения проходов и небольшое тепловложение позволяют уменьшить температурные деформации.
  • 82% Ar и 18%СО2. Здесь достигается хорошая глубина провара, особенно, если сталкиваться приходится с толстолистовым материалом. Позволяет избежать дефектов в шве. Достаточно высокое содержание СО2 делает возможным более продуктивную сварку стали, запачканной маслом, влагой, коррозией, снижая таким образом себестоимость изготовления. Самая популярная смесь, применяемая при сварке полуавтоматом. В сравнении с чистым СО2 позволяет увеличить скорость  до 10% и достичь экономии сварочной проволоки до 15%.
  • 86% Ar, 12% СО2, 2% О2. Предназначена для достижения maх производительности. Позволяет варить в большом диапазоне по току и напряжению, облегчая сварщику их выбор и достижение хороших результатов без дефектов. Отлично подходит как для полуавтоматической, так и для автоматической и роботизированной сварки. Обеспечивает низкий уровень образования брызг наряду с хорошей глубиной провара. Позволяет получить гладкие сварные швы, сократить расход проволоки. Обеспечивает плавный переход между основным металлом и швом, что позволяет избежать возникновения концентраторов напряжения. Высокая скорость сварки приводит к снижению термических деформаций в конструкциях.
  • 60% Ar, 10% СО2, 30% Не. Данная смесь, содержащая гелий, была специально разработана для роботизированной сварки, где может быть полностью использован ее потенциал в части скорости. Значительно возрастает производительность, а также заметно снижаются температурные коробления.
    Высокая устойчивость дуги наряду с увеличением теплопроводности, благодаря наличию Не создает жидкую, долго остывающую ванну, что позволяет избежать таких дефектов, как поры при остывании.

Автор: Сварщик Джо

Источник: svarka-master.ru

X
X